
ORSYS - https://www.orsys.lu/en/ - info@orsys.lu - Page 1 / 3

Object Programming in C++
Hands-on course of 5 days - 35h
Ref.: C++ - Price 2024: €2 970 (excl. taxes)

TRAINER QUALIFICATIONS
The experts leading the training are
specialists in the covered subjects.
They have been approved by our
instructional teams for both their
professional knowledge and their
teaching ability, for each course
they teach. They have at least five
to ten years of experience in their
field and hold (or have held)
decision-making positions in
companies.

ASSESSMENT TERMS
The trainer evaluates each
participant’s academic progress
throughout the training using
multiple choice, scenarios, hands-
on work and more.
Participants also complete a
placement test before and after the
course to measure the skills they’ve
developed.

TEACHING AIDS AND
TECHNICAL RESOURCES
• The main teaching aids and
instructional methods used in the
training are audiovisual aids,
documentation and course material,
hands-on application exercises and
corrected exercises for practical
training courses, case studies and
coverage of real cases for training
seminars.
• At the end of each course or
seminar, ORSYS provides
participants with a course
evaluation questionnaire that is
analysed by our instructional teams.
• A check-in sheet for each half-day
of attendance is provided at the end
of the training, along with a course
completion certificate if the trainee
attended the entire session.

TERMS AND DEADLINES
Registration must be completed 24
hours before the start of the
training.

ACCESSIBILITY FOR
PEOPLE WITH DISABILITIES
Do you need special accessibility
accommodations? Contact Mrs.
Fosse, Disability Manager, at psh-
accueil@ORSYS.fr to review your
request and its feasibility.

EDUCATIONAL OBJECTIVES
At the end of the training, the trainee will be able to:

Master the syntax of the C++ language

Implement the concepts of Object-Oriented
Design

Use development tools associated with the
language C++

Master major additions from the C++ 11 standard

Provide workstations equipped with Visual C++
(in Windows) and gcc (in Unix). The HOW was
designed to illustrate all asp

Instructional methods

All exercises include an analysis/design phase
following by a programming phase.

TRAINING PROGRAM

TEACHING METHODS

All the exercises include an
analysis/design phase followed by a
programming phase.

Workstations with the Visual C++ (in
Windows) and gcc (in Unix)
languages are provided. The hands-
on work was designed to illustrate all
aspects of the language and to
always implement object-oriented
design concepts.

THE PROGRAMME
last updated: 01/2018

1) C++ syntax (differences between C and C++)
- Data: Definition, initialization, types of data.
- Expressions: Notion of reference, casting mechanisms.
- Operators (: :, new, delete).
- Functions (passing parameters and returning values by reference, default values,
inlining, overload).
- Using C code in a C++ program.
- References (arguments and return values).
- Constant types.
- Namespaces.
- "Automatic" typing with the keyword auto (C++ 11).
- Hands-on work ¤Getting started with the development environment and programming a
simple program.
Getting started in the development environment and coding a simple program.

2) Object-Oriented Approach
- General principles of Object techniques.
- C++ and Object programming.
- Introduction to Object-oriented methodologies.
- An introduction to UML diagrams and rating (static diagram, dynamic diagram,
collaboration diagram, scenario).
- Hands-on work ¤Applying concepts to a case study that will be central to the exercises
that follow.
Applying the concepts to a case study, which will be one of the recurring themes in the
exercises that follow.



ORSYS - https://www.orsys.lu/en/ - info@orsys.lu - Page 2 / 3

3) C++ classes and objects.
- Syntactical aspects: Fields, methods, constructors.
- Access control.
- Self-reference.
- Fields and static methods.
- Functions.
- Friend methods and classes.
- Dynamically creating object tables.
- Methodological aspects: Designing classes.
- Copy and move constructors (C++ 11).
- Delegating constructors (C++ 11).
- Introduction to memory management issues (stack, heap, garbage collector).
- Hands-on work ¤Programming the case study. Designing and building a class and
interface hierarchy.
Programming the case study. Designing and constructing a class and interface hierarchy.

4) Derivation and inheritance.
- Principle of derivation.
- Syntactical aspects: Definition of derived classes, constructors.
- Access control.
- Implementing polymorphism: Virtual functions.
- Reusing code: Abstract classes.
- Interfaces.
- Multiple inheritance.
- Semantic and methodological aspects: Code factoring.
- Hands-on work ¤Setting up polymorphism in the case study.
Setting up polymorphism in the case study.

5) Exceptions
- Syntactical aspects: Try blocks, generating exceptions.
- Methodological aspects: Constructing an exception hierarchy, use of exceptions.
- Hands-on work ¤Introducing exceptions into the case study.
Introduction of exceptions in the case study.

6) Overloading operators
- Principle of overload.
- Overloading binary operators.
- Particular overload: Index operator, function, conversion.
- Overloading memory management operators.
- Overloading the operators '<<' and '>>'.
- Hands-on work ¤Overloading some simple operators.
Overloading several simple operators.

7) Models
- Class models. Principles and general mechanisms. Overloading models and redefining
methods.
- Function model. Principles and general mechanisms. Overloading templates.
- Templates and overloading operators.
- Templates and derivation mechanisms.
- Improvements offered by C++ 11.
- Hands-on work ¤Model exercises.
Exercises in templates.

8) I/O and overview of STL
- I/O.
- The principle of streams and input/output class hierarchy.
- Description of some input/output classes.



ORSYS - https://www.orsys.lu/en/ - info@orsys.lu - Page 3 / 3

- Overview of STL.
- Objectives and principles.
- Descriptions of some templates and classes.
- Containers, iterators, range-based for loop (C++ 11).

9) Conclusion
- Software lifecycle: Testing, integration, release method.
- Interaction with other environments.
- Critical analysis of C++.
- Evolution of C++.

DATES

REMOTE CLASS
2024 : 10 Jun, 23 Sep, 02 Dec


